在Python中:
- df.Column_Name.fillna(df.Column_Name.mean(),inplace = True)
- df.Column_Name.fillna(df.Column_Name.median(),inplace = True)
- df.Column_Name.fillna(df.Column_Name.mode(),inplace = True)
平均值、中位数、模式估算的缺点—它减少了估算变量的方差,也缩小了标准误差,这使大多数假设检验和置信区间的计算无效。它忽略了变量之间的相关性,可能过度表示和低估某些数据。
逻辑回归
以一个统计模型为例,它使用逻辑函数来建模因变量。因变量是二进制因变量,其中两个值标记为“0”和“1”。逻辑函数是一个S函数,其中输入是对数几率,输出是概率。(例如:Y:通过考试的概率,X:学习时间.S函数的图形如下图)
图片来自维基百科:逻辑回归
在Python中:
- from sklearn.pipeline import Pipeline
- from sklearn.preprocessing import Imputer
- from sklearn.linear_model import LogisticRegression
-
- imp=Imputer(missing_values="NaN", strategy="mean", axis=0)
- logmodel = LogisticRegression()
- steps=[('imputation',imp),('logistic_regression',logmodel)]
- pipeline=Pipeline(steps)
- X_train, X_test, Y_train, Y_test=train_test_split(X, y, test_size=0.3,random_state=42)
- pipeline.fit(X_train, Y_train)
- y_pred=pipeline.predict(X_test)
- pipeline.score(X_test, Y_test)
逻辑回归的缺点:
- 由于夸大其预测准确性的事实,容易过度自信或过度拟合。
- 当存在多个或非线性决策边界时,往往表现不佳。
- 线性回归
以一个统计模型为例,它使用线性预测函数来模拟因变量。因变量y和自变量x之间的关系是线性的。在这种情况下,系数是线的斜率。点到线形成的距离标记为(绿色)是误差项。
图片来自维基百科:线性回归
图片来自维基百科:线性回归
在Python中:
- from sklearn.linear_model import LinearModel
- from sklearn.preprocessing import Imputer
- from sklearn.pipeline import Pipeline
-
- imp=Imputer(missing_values="NaN", strategy="mean", axis=0)
- linmodel = LinearModel()
- steps=[('imputation',imp),('linear_regression',linmodel)]
- pipeline=Pipeline(steps)
- X_train, X_test, Y_train, Y_test=train_test_split(X, y, test_size=0.3,random_state=42)
- pipeline.fit(X_train, Y_train)
- y_pred=pipeline.predict(X_test)
- pipeline.score(X_test, Y_test
线性回归的缺点:
KNN(K-近邻算法)
这是一种广泛用于缺失数据插补的模型。它被广泛使用的原因是它可以处理连续数据和分类数据。
此模型是一种非参数方法,可将数据分类到最近的重度加权邻居。用于连续变量的距离是欧几里德,对于分类数据,它可以是汉明距离(Hamming Distance)。在下面的例子中,绿色圆圈是Y.它和红色三角形划分到一起而不是蓝色方块,因为它附近有两个红色三角形。
图片来自维基百科:KNN
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.preprocessing import Imputer
- from sklearn.pipeline import Pipeline
-
- k_range=range(1,26)
-
- for k in k_range:
- imp=Imputer(missing_values=”NaN”,strategy=”mean”, axis=0)
- knn=KNeighborsClassifier(n_neighbors=k)
- steps=[(‘imputation’,imp),(‘K-NearestNeighbor’,knn)]
- pipeline=Pipeline(steps)
- X_train, X_test, Y_train,Y_test=train_test_split(X, y, test_size=0.3, random_state=42)
- pipeline.fit(X_train, Y_train)
- y_pred=pipeline.predict(X_test)
- pipeline.score(X_test, Y_test)
KNN的缺点:
- 在较大的数据集上耗费时间长
- 在高维数据上,精度可能会严重降低
多重插补
多个插补或MICE算法通过运行多个回归模型来工作,并且每个缺失值均根据观察到(非缺失)的值有条件地建模。多次估算的强大之处在于它可估算连续,二进制,无序分类和有序分类数据的混合。
多重插补的步骤是:
- 用鼠标输入数据()
- 使用with()构建模型
- 使用pool()汇集所有模型的结果
(编辑:厦门网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|